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Viscous flow past a circular cylinder becomes unstable around Reynolds number Re = 40. 
With a numerical technique based on Newton’s method and made possible by the use of a 
supercomputer, steady (but unstable) solutions have been calculated up to Re = 600. It is 
found that the wake bubble (region with recirculating flow) grows in length approximately 
linearly with Re. The width increases like Re’j2 up to Re = 300 at which point a transition to 
linear increase with Re begins. At the highest Reynolds numbers we reached, the wake resem- 
bles a pair of translating, uniform vortices, both touching the center line. The cylinder, moving 
in front with the same speed, supplies the vorticity required to balance diffusion. 0 1985 
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INTRODUCTION 

The structure of viscous steady flow past a circular cylinder at high Reynolds 
numbers forms one of the classical problems in fluid mechanics. In spite of much 
attention, several fundamental questions remain open. Apart from a previous 
calculation by the present author [6], complete, steady flow fields have been 
obtained numerically only up to Re = 120. This is also close to the upper limit for 
experiments (due to temporal instabilities). Both numerics and experiments have 
pointed to a recirculation region growing in length like O(Re) and in width like 
O(Re’12). Persistence of these growth rates for Re -+ co have been assumed in most 
recent asymptotic studies of steady high Reynolds number flows past a body (e.g., 
Smith [18, 191). A possible Euler flow, consistent with this idea, was analyzed by 
Brodetsky [3] in 1923. It is known as the Helmholtz-Kirchhoff free streamiine 
model. This suggested limit is characterized by two vortex sheets leaving the body 
tangentially approximately 55” from the upwind center line and extending to 
downstream infinity, enclosing a region of stagnant flow. Although this undoub- 
tedly is a solution for Re = co, Batchelor [2] gave, in 1956, several arguments 
suggesting this would be an unlikely limit for Re -+ co. He proposed an alternative 

* Part of this study was performed while the author was working at the California Institute of 
Technology. It was then supported by Control Data Corporation, Department of Energy (Office of 
Basic Energy Sciences) and the John Simon Guggenheim Memorial Foundation. 

297 
OOZl-9991185 $3.00 

Copyright 0 f985 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



298 BENGTFORNBERG 

in which a finite wake with piecewise constant vorticity was bounded by vortex 
sheets. Only very few Euler solutions of this so called Prandtl-Batchelor type have 
been calculated (e.g., [17] contains one example and some further references). 
None of these are for flow past a cylinder. Even in cases where such Euler solutions 
exist, the question remains open whether they can be reached as limits for Re -+ co. 
Peregrine discusses in [12] some other possibilities for steady high Reynolds num- 
ber wakes. Although he makes no firm predictions for Re -+ co, his arguments 
suggest (in agreement with our present results) that the width of the wake should 
be proportional to its length. In a recent study, Smith [20] also considers the 
possibility of wide wakes. 

The calculation [6] showed a reversal of trends near Re = 300. Significant 
amounts of vorticity started to get convected into the interior of the recirculation 
region from behind. This caused the wake to grow wider and shorter. Our current 
work confirms the qualitative feature of vorticity recirculation from the end of the 
wake bubble and its rapid increase in width. However, the observed shortening of 
the wake is found to have been erroneous. The rate of increase for the width 
becomes nearly linear around Re = 450. In the remaining range of this calculation, 
i.e., up to Re = 600, a quite distinctive pattern emerges for the evolution of the flow. 
The wake consists mainly of a pair of vortices containing a low and very uniform 
level of vorticity. These vortex regions meet along the center line. They grow in size 
linearly with Re and follow a short distance behind the cylinder. The separated 
boundary layers from the body feed vorticity to the front edges of these regions, 
thus providing an influx of vorticity needed to balance diffusion. The region 
between the cylinder and these vortices has nearly zero interior vorticity. 

All the numerical calculations in this present work were carried out on the Con- 
trol Data Corporation Cyber 205 computers located at the CDC Service Centers in 
Arden Hills, Minnesota and in Rockville, Maryland. We wish to express our 
gratitude to Control Data Corporation for their extensive support of this study. 

MATHEMATICAL FORMULATION 

With a cylinder of radius 1 and a Reynolds number based on the diameter, the 
governing time independent Navier-Stokes equations, expressed in stream function 
Y and vorticity o, take the form 

Lf!P+o=o (1) 

a!&’ dcc, a!Y 80 -.---.- 
ax ay ay 8~ 

Accurate numerical approximation and economical computational solution of these 
equations in the given geometry pose several difficulties which previous 
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investigators have dealt with in a variety of ways. The most serious of the dif- 
ficulties seem to be: 

1. Boundary conditions for Y at large distances. 
2. Boundary condition for o at the body surface. 
3. Avoiding the loss of accuracy that is associated with upwind differencing. 
4. Economical choice of computational grid. 
5. Reliable and fast rate of convergence of numerical iterations. 

Point (5) above has been the limiting factor in virtually all previous attempts to 
reach high Reynolds numbers. No reliable technique has emerged to prevent slowly 
converging iteration schemes from picking up physical instabilities in the artificial 
time of the iterations. 

NUMERICAL METHOD 

All vorticity is concentrated on the body surface and in the wake downstream of 
the body. Outside this region the much simpler equations 
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FIG. 1. Conformal mapping of the computational region. 
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are adequate. The top part of Fig. 1 shows the upper half plane minus a unit circle 
and, dotted, a region which contains all the vorticity (apart from the far wake). The 
bottom part of the figure shows how the mapping z = & + l/s maps these two 
regions to the first quadrant and a rectangle, respectively. In all our calculations 
(apart from some designed only to test the accuracies of our boundary conditions) 
this rectangle was of size tM = 134 and yl,,, = # (corresponding to a downstream 
cutoff at a distance of x,,,, = 175.8 radii from the cylinder). 

Grids of three different densities were used. The “Fine Grid” had 541 * 109 
points: 

ti=2i/81, i= 0, l,..., 540, 

q=a1,3+(1-4a)&, ii=4j/243, j=O, l,..., 108, a=0.15. 
(5) 

The two coarser grids contained 361 * 73 and 241 * 49 points (using 5, = i/27, 
cj= 2j/81 and cj = i/18, [,= j/27, respectively). Thus, each coarser grid had 3 as 
many points in each direction as the next finer one. Figure 2 illustrates the extent of 
the computationa region and shows the coarsest of these three grids near the cylin- 
der. 

The Navier-Stokes equations, transformed to the z plane, take a form almost 
identical to (1) and (2): 

AY++/J=O (6) 

Re dY am ay aa Au+- -.--_._ 
i 2 at at7 af7 at 

where J= Idz/dx12 is the Jacobian of the mapping. These equations were modified 
further by subtracting out potential flow. The stream function Ic/ for the difference is 

1 x=173.9 
y= 41.4 

1888/1215 

‘L+-- ..- _..~ ..~ 
1 5 10 15 20 25 30 35 40 45~- 50 175.87 

FIG. 2. Part near the cylinder of the 241*49 grid. 
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rjj = !P-- 25~. On a grid in the (stretched) z plane, Eqs. (6) and (7) were 
approximated at all interior points with centered second-order finite differences. To 
close the system, boundary conditions have to be implemented for $ and o. 

The extreme sensitivity of the final solution to small errors in these conditions 
has only recently been fully recognized [6]. Already at Be = 2 it was found that use 
of the free stream value for $ along circular outer boundaries at distances 23.1 and 
91.5 caused 18 % and 4.4 % errors in the level of vorticity on the body surface. 

The “Oseen” approximation is the leading term in an asymptotic expansion for 
the flow far out in a wake (e.g., Imai [IS]). In polar coordinates, it takes the form 

where Q = (4 Re r)l12 sin $0, erf Q = 27~~‘~ jf ePS2 ds and C, the drag coefficient. C, 
can be evaluated as a line integral around the body. 

-.s 
-.25 

FIG. 3. Difference between streamfunction and free stream compared with the Oseen approximation 
for Re = 200. 
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The performance of this Oseen condition as an outer boundary condition proves 
to be disappointing. The percentage errors mentioned above improve, but only to 
3.4 and 1.2%, respectively. For increasing Re, direct use of (8) becomes 
meaningless. Figure 3 illustrates this by comparing the true ti (here the difference 
between streamfunction and free stream, not potential flow) with the values from 
(8) at Re = 200. The two fields bear no resemblance to each other at the distances 
from the body we are interested in. (Further terms in the Oseen expansion do not 
significantly effect this discrepancy.) 

Comparison with numerics suggests that (9) is far more accurate than (8). 
Furthermore 

1. Any errors in (9) are present only in a very narrow region along the out- 
flow axis, not along the whole upper boundary as with (8). 

2. The governing equation for w is of a type which cannot transport incorrect 
information for o back up towards the cylinder. 

With this background, let us briefly outline how the boundary conditions of high 
accuracy can be implemented on the edges of the present computational region. 

Boundary Conditions for o 

Left boundary: t=o,Od?y<qN; cc) = 0. 
Bottom boundary: r] = 0,O < 5 < 2; a relation based on A@ + w/J= 0, 

$ an even function of I?; 
2<t<t,; co = 0. 

Right boundary: t=tA4,o<Y<rN; “CM = q,~,&‘- I/&4)“. 
Top boundary: rl=TlN,o<5<5icl; o=o. 

The condition at the right boundary comes from the observation that the leading 
term of (9), transformed to 5, q-coordinates simplifies to 

where c1 and c2 are constants. The mapping has achieved a separation of variables. 

Boundary Conditions for $ 

Left boundary: 5=0,06Vl~~N; *=o. 
Bottom boundary: v] = 0,O d 5 6 CM; $ =o. 
Right boundary: < = t,,,.,, 0 6 y < Y,,,; a2$jay2 = o 

(noting that a’$/@’ <d2@/dy2 
along this boundary). 

Top boundary: V=Vhl,O~iJ~tM; A finite difference scheme 
connecting $-values on the 
top two grid levels as 
described below. 
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Boundary conditions which simulate the asymptotic decay of solutions in infinite 
regions have been derived independently several times for special applications (e.g., 
c5, 61). More general discussions on this subject can be found in [S, 111. We 
propose here a method which, for Laplace’s equation, gives a convenient finite dif- 
ference formulation. 

The difference formula we are looking for should be satisfied by all modes which 
decay for q increasing but reject all modes which grow. We consider the Cauchy 
problem for AI/I = 0 and discretize it only in the <-direction with irk = k. At, k = . . . . 
-2, -LO, 1, 2 ,...: 

A b-function initial condition $(<, q) = 6(k) contains equal amounts of ail Fourier 
modes. Each mode can either grow or decay for q increasing. Choosing the decay- 
ing mode, Fourier recomposition at level q + Aq gives 

$((k, q + Ay) =&j”” e-21sin(z/2) cos kz dz = c,JL), 
0 

where n? = Ay/A<. The finite difference stencil, 

level y + Ay 1 

levelq ... -cZ(;l) -c,(h) -c,(l) -cl(n) -c2(Iz) .‘., 

gives a relation for $ between the two top grid lines. The further condition that 
$ = 0 along 5 = 0 may be taken into account by a simple modification of the coef- 
ficients. The right-hand truncation at a finite t = 5, can be approximated by 
assigning $45, Y) = 4VlM, r) for t > tM. 

In our calculations, we have chosen to use a slightly more symmetric version of 
this difference formula, namely 

level q -t Aq . . . c2 (-;) q-g co(+) q-i) c2(-;)..., 

level q ... -c2 (3 -cl (3 -co(;) -cl (;) -c2 (;) . . . . 

again suitably modified to include the end effects. 
The coefficients ck(n), k=O, 1, 2 ,..., can be calculated directly from (12). For 

increasing values of k, the following asymptotic expansion becomes useful: 
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+ L’.. 
(13) 

The discrete approximations at the interior points together with the boundary 
conditions form, after minor simplifications (explicitly eliminating all boundary 
unknowns apart from $ at the top boundary), a non-linear algebraic system of 
(M- 2)(2N- 3) equations with equally many unknowns. In most earlier works, 
great care has been taken to ensure that, at this stage, this (or some equivalent) 
non-linear system has a diagonally dominant form for low Re. This would allow 
direct functional iteration to convergence. Techniques such as upwind differencing 
[l, 4, 141 help in this respect at the cost of lowered accuracy. Newton’s method, 
described below, offers an outstanding alternative. 

NEWTON'S METHOD 

Newton’s method is a well-known procedure for finding zeros of non-linear 
systems of equations. Each iteration involves the solution of a linear system. Con- 
vergence is quadratic and guaranteed to occur for approximations sufficiently close 
to any “simple” solution. The realization that this procedure is practical for 
extremely large systems (several tens of thousands of equations) is rather recent and 
linked to the emergence of powerful computers. 

For our present problem, use of Newton’s method offers several major advan- 
tages: 

1. The quadratic convergence rules out all possibilities of physical instabilities 
in real time being carried over to the artificial time of the iterations. Convergence is 
guaranteed if an isolated solution exists in the neighborhood of an initial 
approximation. 

2. If turning points or bifurcation points are found, they will cause no serious 
difficulties. 

3. No upwind differencing is needed. This procedure is typically employed for 
two reasons: (1) to ensure convergence of an iterative method; (2) to avoid mesh 
size oscillations. The first reason no longer applies. Our outflow boundary con- 
dition for o proved very effective in suppressing potential oscillations. 
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4. Boundary conditions at the body surface become easier to implement. The 
fact that we have two conditions for rl/ and none for o can cause a problem if (6) 
and (7) are treated separately. With Newton’s method it is sufficient that the con- 
ditions are independent and their number is right. 

The main disadvantage with Newton’s method is a rather high computational 
cost. 

SOLUTION OF LINEAR SYSTEM 

For a grid with M*N points, we introduce the vectors +,, $*,..., $M--1, and 
+,,- I of lengths N - 2 and A4 - 1 elements, respectively. They denote the unknown 
$-values at grid points not on the coordinate axis (see Fig. 4). For the o-values, we 
similarly introduce or ,..., oMP 1 (wN-, = 0 and not unknown). With this ordering 
of the unknowns and a matching ordering of the equations, Fig. 5 shows the 
Jacobian in Newton’s method. Since the top right corner contains a single diagonal, 
explicit multiples of the top (N- 2)(M- 2) equations can be superposed on the 
equations below to eliminate the bottom right corner. The bottom left corner forms 
a separated system of size (N - l)(M - 2) with a structure shown in Fig. 6 (the 
specific dimensions given in the figure correspond to the “Fine Grid” with M = 541, 
N= 109). This system was solved by a border algorithm similar to the one 
described in [lo]. The code was written with particular attention being paid to 
minimize the number of page faults in the virtual memory of the Cyber 205 com- 
puter (no explicit I/O was performed to accomodate the arrays of approximately 60 
A4 words required during the solution). 

The complete linear solver lends itself very well to vectorization. Every part of 
significant cost turns out to take the form of a “linked triad’ with vectors never 
shorter than 4(N- 2) + 1 or M- 2. The linked triad is the fastest floating point 
operation on the Cyber 205. Expressions of the form vector-op-vector-op-scalar, 
where one “op” is + or -, the other * can execute with both operations ruaning 

9 
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“,u’2*3 - - - - - - - - - - - - -$M.2 I+ 

ii 
////N////////j////, 

* 

5M F 
CYLINDER SURFACE 

FIG. 4. Notation for the vectors of unknowns. 
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FIG. 5. Structure of the linear system in Newton’s method. 
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FIG. 6. Structure of the reduced Jacobian. 
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simultaneously. For a 2-pipe Cyber 205, the peak speed is 200 Mflops (million 
floating point operations per second, 64-bit accuracy). Due to scalar overhead, fre- 
quent page faults and limited vector lengths (averaging around 400), the actual 
measured computational rates were significantly lower. For our fine grid, the setup 
time for each Jacobian was 0.040 s and the solution time for each linear system 
(requiring 5.1*101* arithmetic operations) was 403 s. This gives a sustained average 
speed of 127 Mflops. 

NUMERICAL RESULTS 

Figures 7 and 8 show contour lines for the streamfunction and the vorticity for 
different Reynolds numbers up to 600. Figure 9 illustrates the vorticity distribution 

Re =230 

__- 

#s- 

‘1 5 13 20 30 .40 so 60 79 80 90 100 1x 120 130 

Re =300 

Re =400 

FIG. 7. Streamlines. 



308 BENGT FORNBERG 

Re=lOO 

100 110 120 130 

Re=ZOO 

Re ~300 

Re=400 

Rex500 

FIG. 8. Contours of constant vorticity. 
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in a different way (note that the widths of the wakes appear exaggerated in this 
figure because of different scales in the x and y directions). Starting around 
Re = 300, the vorticity fields show a recirculation back into the wake from the end 
of the bubble. With this is associated a quite sudden increase in width. At 
approximately Re = 500, this increase in width seems to have settled to a linear rate. 
The linear growth in length is unaffected by this transition around Re = 300. For 
Reynolds numbers 400, 500, and 600, Fig. 9 shows distinct interior plateaus of con- 
stant vorticity. The levels in these three cases are -0.333, -0.241, and -0.198, 
respectively. (The few erroneous contours near the top of the bubble in Fig. 8, 
Re = 600 appeared because the plateau value of -0.198 happened to be very close 
to -0.2 which was used as one of the contour levels.) 

Figures 10 and 11 show the results we have obtained for the length and 
maximum width of the wake bubble with use of the three different grid densities. 
Only for the results in Figs. 7-11 were any noticeable differences present between 
the two finer grids. In these cases, the “Fine Grid” was used at Re 500 and 600. The 
remaining figures are based on the “Medium Grid” (M= 361, N= 73) at all 
Reynolds numbers. Figure 12 shows the vorticity along the body surface as a 
function of the polar coordinate angle, measured from the front stagnation point. 
We note that the magnitude of the surface vorticity decreases with increasing Re at 
the upper end of this calculation. 

With our definition of Re, the pressure p satisfies the following equations in the 
physical x-y coordinate system: 

Changing notation to let x denote complex positions in the x plane, an arbitrary 
conformal mapping z = z(x), where z = 5 + iv transforms (14) and (15) into 

where g(x) = (dz/dx)* and h(x) = (d2z/dx2)( g(x)/\ g(x)\). Following the integration 
paths illustrated in Fig. 13a, the pressure was calculated at all grid points. The com- 
putational domain does not reach sufficiently far out in any direction to allow a 
firm normalization of p = 0 at infinity. As an approximation, we have set p = 0 at 
the top right corner of the grid (with physical coordinates (173.4, 41.4)). Figure 13b 
shows a different path, also connecting this corner to the front stagnation point. 
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a 

FIG. 9. Distribution of vorticity in wake behind cylinder. 
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FIG. 9. Distribution of vorticity in wake behind cylinder. 
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FIG. 10. Length of wake bubble (measured from the center of 
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FIG. 11. Width of the wake bubble. 
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FIG. 12. Vorticity on the body surface. 
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FIG. 13. (a) Integration paths for the pressure field; (b) integration path for accuracy verification. 
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TABLE I 

Front Stagnation Pressure as Function of Integration Path 

Reynolds 
number 

Front stagnation pressure 
following path in Figures 

13a 13b 

100 0.5304 0.5325 
200 0.5150 0.5170 
300 0.5091 0.5109 
400 0.5043 0.5057 
500 0.4963 0.4971 
600 0.4871 0.4873 

a 

0, 

b 
Pressure along 
cenLre oJ wake 
behind cylinder 

FE. 14. (a) Pressure on the body surface; (b) pressure along the centre of the wake. 
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FIG. 15. Pressure fields. 
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FIG. 16. Integration paths for calculation of the drag coefficient. 

Table I compares the front stagnation pressure following these two paths in order 
to demonstrate the accuracy in the integration of (16) and (17). However, our nor- 
malization causes this pressure to fall slightly below 0.5 in conflict with theoretical 
results (e.g., in [7]). 

Figures 14a and b show the pressure along the body surface and along the line of 
symmetry behind the body. Complete pressure fields are shown in Figs. 15a-e. 

The drag coefficient C, can be calculated as a line integral around the body. For 
a path r enclosing the cylinder in the physical x plane, the generalized Blasius for- 
mula (see, e.g., [9]) gives 

Expressed in a coordinate system z = z(n), where z(x) analytic, (18) becomes 

I 

1.0 100 -- 

200 
300 
400 

.5 -- - 500 
----- 600 

0. 1 I I I I 1 

0. 
l&/l215 

.5 1.0 1.5 ‘) 

FIG. 17. Drag coeffkient as function of the integration path. 
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Re 

FIG. 18. Drag coefficient as function of the Reynolds number 

(with the conventional notations z = 5 + iy, 5 = [ - iv, a/dz = $(8/a< - i a/@), 

a/a?= ga/ag + i ajar)). 
Figure 16 shows the sequence of integration paths that were used and Fig. 17 the 

evaluated drag coefficients as functions of these paths (by the midpoint rule, 
Richardson extrapolated to fourth-order of accuracy). When the integration path 
fohows the vortex sheet for some distance, integration errors build up. For paths 
either nearer or further away from the cylinder, C, is found to be virtually indepen- 
dent of the choice of path. Figure 18 shows the drag coefficient as function of the 
Reynolds number and Table II compares these values for C, with those reported in 
CO 

TABLE II 

Drag Coefficient as Function of Re 

Reynolds 
number 

100 
200 
300 
400 
500 
600 

CO 

1.060 
0.833 
0.729 
0.645 
0.528 
0.430 

Co according 
to C6l 

1.058 
0.829 
0.722 

- 
- 
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TESTS OF ACCURACY 

Three sources of errors are present: 

1. rounding errors; 
2. implementation of top and far right boundary conditions at finite distan- 

ces; and 
3. truncation errors because of finite differencing of derivatives. 

The first source of errors proves to be negligible with the 64-bit floating point 
wordlength (48-bit mantissa). 

The size of the second type of errors can be tested by moving the boundary in 
question in and out and checking how this influences quantities like wake length 

(**--.-.----------e 400 

a’ 

,.-. c’ .--A-------e-m.. 300 
b’ 

.-CO------- 
.---------- 4 200 

l ’ 
_1 

10 - 
*. ---.---.----..-----.----- -e 100 

0 “/“*lll”l-l’l”* 
01020 50 100 150 176 

Position of Downstream Boundary 
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13 J 
-se..-----a 600 

12 - 

11 - 

Oo 10 20 50 I 100 I I , , 150 I 176 I 

Position of Downstream Boundary 

FIG. 19. Length (a) and width (b) of the wake bubble as a function of the position of the 
downstream boundary. 
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FIG. 20. Length (a) and width (b) of the wake bubble as a function of the position of the top boun- 
dary. 

and width. Figures 19 and 20 show the results of these tests (for the top boundary 
condition in Fig. 20, compare with Fig. 2 to relate the q-value to the top boundary 
position). 

The third source of errors, truncation errors in the difference approximations, is 
by far the most serious one. We displayed the discrepancies between different grid 
densities already in Figs. 10 and 11. Each coarser grid has $ times the step size in 
each direction compared to the nearest finer grid. With second-order accuracy, this 
translates into an increase in expected errors by a factor of $z2 (the coarsest grid 
could be used only up to around Re = 530 due to the emergence of a spurious turn- 
ing point). Considering the way in which the coarser grids lose their accuracies for 
increasing values of Re, we are inclined to believe that the fine grid slightly 
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underestimates the wake length and width at Re = 600. It seems likely that both 
length and width should be growing linearly with Re at this upper end of our 
calculation. 

CONCLUSIONS 

Apart from a few, very inaccurate calculations, Re = 120 is the highest Reynolds 
number reached by other investigators. Since we in [6] gave results up to Re = 300 
and compared extensively with previous references, we have here limited ourselves 
to only a few comparisons with results in [6]. In most respects there is good 
agreement. The exception is that we now find the shortening (but not the widening) 
of the wake bubble near Re = 300 in [6] to have been erroneous. 

This work falls short of establishing a limit process for 16, 211 and (with a vortex sheet at the edge) in [15, 201. 
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